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Abstract

The US Army Engineer Research and Development Center (ERDC)
constructed a full-scale test section to evaluate the performance of geogrid-
stabilized thin highway pavements. The test section included two
representative highway pavements composed of hot-mix asphalt concrete
(HMA) over a base course of crushed limestone and a 6 CBR clay subgrade.
One highway lane was surfaced with 3-in. HMA and a 6-in. crushed
limestone base course stabilized with geogrid. The second highway lane was
surfaced with 4 in. of HMA and an unstabilized, 8-in. crushed limestone
base course. Each test lane contained a suite of instrumentation consisting
of strain gauges, earth pressure cells, moisture probes, pore water pressure
transducers, and temperature probes. The geogrid was also instrumented
with strain gauges in an attempt to determine the strain on the geogrid
during testing. Each test lane was trafficked with simulated truck traffic to
evaluate the rutting performance of the different pavement sections. This
report summarizes the material characterization, pavement construction,
instrumentation response, and performance response of the two test items.

DISCLAIMER: The contents of this report are not to be used for advertising, publication, or promotional purposes.
Citation of trade names does not constitute an official endorsement or approval of the use of such commercial products.
All product names and trademarks cited are the property of their respective owners. The findings of this report are not to
be construed as an official Department of the Army position unless so designated by other authorized documents.

DESTROY THIS REPORT WHEN NO LONGER NEEDED. DO NOT RETURN IT TO THE ORIGINATOR.
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Unit Conversion Factors

Multiply By To Obtain

cubic feet 0.02831685 cubic meters

cubic inches 1.6387064 E-05 | cubic meters

cubic yards 0.7645549 cubic meters

degrees Fahrenheit (F-32)/1.8 degrees Celsius

feet 0.3048 meters

gallons (US liquid) 3.785412 E-03 cubic meters

inches 0.0254 meters

miles per hour 0.44704 meters per second

pounds (force) 4.448222 newtons

pounds (force) per foot 14.59390 newtons per meter

pounds (force) per inch 175.1268 newtons per meter

pounds (force) per square foot 47.88026 pascals

pounds (force) per square inch 6.894757 kilopascals

pounds (mass) 0.45359237 kilograms

pounds (mass) per cubic foot 16.01846 kilograms per cubic meter

pounds (mass) per cubic inch 2.757990 E+04 kilograms per cubic meter

pounds (mass) per square foot 4.882428 kilograms per square
meter

pounds (mass) per square yard 0.542492 kilograms per square
meter

tons (force) 8,896.443 newtons

yards 0.9144 meters
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1.1

1.2

1.3

Introduction

Background

Transportation professionals are presented with the challenge of building
and maintaining expanding infrastructure systems under the constraints
of shrinking budgets. The competing demands of minimizing costs and
maximizing performance are a key issue for designers and maintainers at
the federal, state and local levels. As raw material costs continue to
increase, this challenge has intensified. In particular, rising crude oil costs
have served to highlight these issues during the design of flexible
pavements. The inclusion of geosynthetics in flexible pavement structures
for base reinforcement has long been accepted as a means of reducing
costs and/or extending pavement service life. As new products enter the
market, designers are forced to speculate concerning the performance
benefits of these products when specifying them.

Objective

The objective of this effort was to construct and traffic a full-scale test
section with varying structural components over a firm subgrade to
provide performance data for comparing the effectiveness of Tensar’s
triaxial geogrid to an unstabilized flexible pavement design. A secondary
objective was to develop performance data for the verification of
mechanistic performance models for Tensar’s geogrid reinforcement
products currently on the market.

Scope

The scope of this project included the construction and trafficking of a
full-scale test section comprised of two individual test items, one having a
geogrid-stabilized base course. The US Army Engineer Research and
Development Center (ERDC) constructed the full-scale test section as
designed by Tensar under shelter in its Hangar 4 Pavement Test Facility.
During construction, quality control data were collected periodically to
verify layer properties and to ensure that the project objectives were
accomplished. Each test item was trafficked with ERDC’s Heavy Vehicle
Simulator (HVS). Pavement performance data were collected at selected
intervals during trafficking for use in comparing the performance of the
test item with the geogrid-stabilized base course to the test item with an
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unstabilized base course. In addition, instrumentation response data were
collected and reported to support the verification of mechanistic pavement
performance models.
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2 Test Plan and Layout

The structural design of the test section was developed by Tensar
Corporation. Tensar designed two unigque pavement structures to quantify
the benefit associated with the use of a geogrid in a flexible pavement
structure over a firm subgrade. A profile view of the test section is shown in
Figure 1. Each test item consisted of a 10-ft-wide by 50-ft-long testing area.
The subgrade for both test items was constructed with 24 in. of high-
plasticity clay (CH) placed to achieve the target California Bearing Ratio
(CBR) value of 6%. A CBR of 6% was selected to provide a test section with
medium subgrade strength. Item 1 was constructed with an 8-in.-thick
unstabilized aggregate base course consisting of a crushed limestone flexible
base meeting TXDOT Grade 2 Type A specifications. Item 1 was surfaced
with a 4-in. hot-mix asphalt (HMA) concrete layer. Item 2 was constructed
with a 6-in.-thick flexible base course of the same material, stabilized by
placing a triaxial geogrid at the base-subgrade interface. Item 2 was
surfaced with a 3-in. HMA layer. The two test items were constructed
simultaneously to minimize variability and ensure consistency between the
two pavement structures. All construction and traffic testing occurred under
ERDC’s Hangar 4 pavement testing facility, which minimized the potential
for moisture variations due to environmental factors.

Figure 1. Test-section profile view.

Item 1 Item 2

P

L

Geogrid

24”
(CH) Subgrade

6 CBR High PF:ticity Clay

PROFILE VIEW

NOT TO SCALE
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The structural design of the test section was developed by Tensar
Corporation following the guidelines set forth in the AASHTO 1993 design
guide (AASHTO 1993) and their SpectraPave4Pro™ software. The
unstabilized control item was developed using the tools and tables provided
in the second edition of Pavement Analysis and Design (Huang 2004). The
designed structural number for the unstabilized item is 2.88. The geogrid-
stabilized item was assigned a structural number of 2.92. SpectraPave4Pro
assigns the geogrid-stabilized layer a layer coefficient of 0.267 for use in
calculating the total structural number of the geogrid-stabilized item. For
further information on the design structural number of the geogrid-
stabilized layer, please reference Tensar’s SpectraPave4-Pro™ software.

Each test item contained a suite of instrumentation consisting of asphalt
strain gauges, earth pressure cells, single-depth deflectometers, moisture
probes, pore water pressure transducers, and temperature probes. The
geogrid was also instrumented with strain gauges in an attempt to
determine the strain mobilized by the geogrid during testing.

The test items were trafficked with ERDC’s Heavy Vehicle Simulator
(HVS) simulating normal highway loadings. The configuration used for
testing consisted of a tandem-axle dual wheel gear loaded to a nominal
load of 20,000 Ib. Tire pressures were maintained at 120 psi throughout
testing. The equivalent axle load factor for this configuration is 2.08.
Therefore, one pass of the HVS was equal to 2.08 equivalent standard axle
loads (ESALS).
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3.1

3.2

Materials

Description and characterization of the materials used during construction
of the test sections are presented in this chapter. Field and laboratory tests
were conducted on the subgrade, base, and surface layers of each test item.
The results of these tests are also summarized in this chapter.

Subgrade

A locally available high plasticity clay (CH) was used to construct the test-
section subgrade. The CH material consisted of 95.1% fines passing the

No. 200 sieve as shown in Figure 2. As determined by ASTM D4318-10, the
liquid limit, plastic limit, and plasticity index were 73%, 24%, and 49%,
respectively. According to the Unified Soil Classification System (USCS), the
soil was classified as a high-plasticity clay (CH) and an A-7-6 according to
the AASHTO classification system. The subgrade material was processed to
a uniform moisture content of 31% and compacted in 6-in. lifts with a large
pneumatic-tired roller. Each subgrade lift was compacted to its maximum
density at the target moisture content to achieve the design 6% CBR
subgrade strength. The target moisture content of 31% was selected based
upon the relationship between moisture content and CBR when compacted
using modified proctor compaction effort. The in situ dry density after
compaction was 88.4 pcf at the target moisture content of 31%. Figure 3
shows a layer of the subgrade material being compacted before final
grading.

Base course

Crushed limestone was used to construct the flexible aggregate base course.
The gradation for the crushed limestone is also shown in Figure 2. ASTM
procedure D2487-11 was used to determine that the base course was com-
prised of 46.4% gravel, 43.6% sand, and 10.0% non-plastic fines passing the
No. 200 sieve. The coefficient of curvature (C¢) was calculated as 9.08, and
the coefficient of uniformity (Cy) was 80.09. The crushed limestone aggre-
gate base was classified as a poorly-graded gravel with silt and sand (GP-
GM) according to the USCS, an A-1-a according to the AASHTO procedure,
and a Type A Grade 2 flexible base according to the TxDOT Standard
Specifications for Construction and Maintenance of Highways, Streets, and
Bridges. Modified proctor compaction tests were performed in accordance
with ASTM D1557-11 Method C Modified. The maximum dry density was
144.7 pcf at an optimum moisture content of 4.9%.
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Figure 2. Test-section material gradations.
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Figure 3. Subgrade compaction before final grading.
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The crushed limestone material was placed in 8- to 10-in. lifts and
compacted using a large vibratory steel-wheel roller. Figure 4 shows the
crushed limestone material being dumped in place, while Figure 5 shows
the material being compacted.
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3.3

Asphalt

The HMA used as a surface course for this testing was representative of
local highway mix for Mississippi. This mix is a 9.5 mm nominal maximum
aggregate size (NMAS) surface mix. Gradation and pertinent laboratory
characteristics of the HMA are shown in Table 1. Table 2 represents the
Asphalt Institute recommended values for Superpave mix design for
anticipated traffic levels of 300,000 to 3,000,000 ESALs. Placement of the
HMA is shown in Figure 6.
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Table 1. Test-section HMA properties.

Hot-Mix Asphalt Properties
Na 75
Binder Grade PG 67-22
Mixing Temp (C) 310
Compaction Temp (C) 292
1.0in. (25.0 mm) 100
3/4in. (19.0 mm) 100
1/2in. (12.5 mm) 100
3/8in. (9.5 mm) 95
#4 (4.75 mm) 54
#8 (2.36 mm) 34
#16 (1.18 mm) 27
-%n #30 (0.60 mm) 20
8 #50 (0.30 mm) 7
15: #100 (0.15 mm) 5
g #200 (0.075 mm) 3.8
RAP (%) 15
RAP AC (%) 5.5
Gsb 2.6
Gsa 2.682
Abs (%) 1.18
Po (%) 5.7
Gmm 2.429
Gse 2.643
VMA 15.4
VFA 74
P200/Poe 0.76

Table 2. Asphalt Institute recommended values.

Recommended Values

Superpave Parameter Asphalt Institute
Na 75

VMA 15.0 minimum
VFA 65-78
P200/Poe 0.6-1.2
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10

Figure 6. Test section during application of first HMA layer.
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4 Instrumentation

To monitor and characterize pavement response during traffic testing, the
test section was fully instrumented. Sensors were placed in the subgrade,
base course, and HMA surface course. Additionally, the geogrid in Item 2
was instrumented to measure that material response as well. Instrumen-
tation used to capture the dynamic response of the pavement included earth
pressure cells (EPCs), single-depth deflectometers (SDDs), asphalt strain
gauges (ASGs), and geogrid strain gauges (GGs). Environmental parameters
were measured and monitored using pore water pressure sensors (including
temperature) and moisture sensors. Figure 7 shows the profile view of the
typical instrumentation for a traffic lane.

Figure 7. Instrumentation layout for typical test item.
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INSTRUMENTATION — PROFILE VIEW @D Pore Pressure/Temperature
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4.1 Earth Pressure Cells

Vertical stresses in the base course and subgrade were measured using

9-in.-diam EPCs. EPCs provide a quantitative measurement of the vertical
distribution of the stresses within each traffic lane during testing. For this
study, Geokon EPCs were installed. Cells with a maximum pressure range
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4.2

of 100 psi were installed in the subgrade, and 200-psi EPCs were installed
in the base course. Figure 8 shows an EPC being installed 2 in. below the
surface of the subgrade at the interface with the base course.

Figure 8. Installation of an earth pressure cell.

Asphalt strain gauges

Tensile strain at the bottom of an HMA layer provides a quantitative
measure of the pavement response during trafficking. Increases in
permanent, or plastic, strain lead to pavement failure. For this study, strain
at the bottom of the HMA surface was measured using dynamic asphalt
strain gauges (ASGS) in both the transverse and longitudinal directions. The
strain at this location can be used to estimate the fatigue life of the HMA
surface layer of the pavement. The ASGs were manufactured by Applied
Geomechanics and are capable of measuring a range of £3,000 microstrain.
The gauges were placed on the surface of the base course, and HMA from
the asphalt paver was placed as cover over each of the gauges immediately
prior to paving of the entire test section. This process is shown in Figure 9.
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13

4.3

Figure 9. Installation of asphalt strain gauge.
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Geogrid strain gauges

One of the primary mechanisms by which geogrid purportedly works is
through lateral restraint of the base course. In order for the geogrid to
properly perform, a certain amount of strain must be mobilized in the
geogrid, essentially locking the geogrid and aggregate into a stiff sublayer
at the bottom of the base course. Strain measurements along the geogrid
provide a means of quantifying the mobilization of the geogrid.

Strain gauges were attached to the individual ribs (in between the nodes of
a single rib) of the geogrid. Vishay Micro-Measurements EP-08-230DS-
120 gauges, shown in Figure 10, were installed on the geogrid. The strain
gauges were covered with Aqua-Seal to prevent moisture damage. Finally,
an epoxy coat was applied to provide additional protection from aggregate
damage to the strain gauges. Figure 11 shows the installed gauges.

Gauges were applied to the individual ribs (in between the nodes of a
single rib) of the geogrids. The strain gauges were located at the positions
indicated in Figure 12. Wiring was laid in a trench in the subgrade below
the geogrid to prevent damage during base-course installation. The
wooden supports were removed, and the strain gauges were covered with a
thin layer of sand to minimize damage due to large aggregates during
base-course construction as shown in Figure 13.
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Figure 10. Geogrid strain gauges.

Figure 11. Strain gauges installed on the geogrid.
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Figure 12. Location of strain gauges on geogrid.

Item 2

S3
Station 25

Station 25

* Not to scale

Figure 13. Installation of geogrid strain gauges in the test section.

Geogrid strain
gauges protected
by sand
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4.4

Single-depth deflectometers

Measurements of deformations in the subgrade are used to quantify the
stabilization benefits of a geogrid as well as assisting with the validation of
the failure mechanism within the pavement structure. Potential reductions
in vertical stresses at the subgrade should also be reflected as reductions in
the deformation. In theory for pavements with similar structural com-
ponents, the geogrid-stabilized pavement should show lower deflections
than the unstabilized pavement at a given traffic level.

Vertical deflections in the subgrade were measured using single-depth
deflectometers (SDDs). One SDD was placed in the middle of each test
item along the centerline of traffic. The SDD was placed such that the shaft
was anchored at a depth of 9 ft. from the top of the subgrade. A linear
velocity displacement transducer (LVDT) with a range of £2 in. was placed
in the housing such that it was in contact with both the anchor rod and the
surface plate as shown in Figure 14. Thus, the LVDT measured movement
of the plate 2 in. below the base-subgrade interface relative to the control
point located at a depth of 9 ft.

Figure 14. Installed SDD.
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5.1

Pavement Characterization

As-built properties

The test items were characterized by performing a series of tests on the
as-constructed pavement. During test-section construction, the dry
density and moisture content were measured for each pavement layer
using a nuclear moisture-density device method outlined by ASTM
D6938-10. Values from these tests were used to verify the uniformity of
each of the pavement layers during construction as well as for comparative
purposes between layers. Field in-place CBR tests were performed
according to ASTM D4429-09a. As-built properties of the base and
subgrade are summarized in Table 3.

Table 3. As-built test-section properties.

ltem 1 Item 2
Test 4-in. Nominal AC 3-in. Nominal AC
Unstabilized Base Stabilized Base
CH Subgrade Properties
Wet Density (pcf) 116.9 116.2
Dry Density (pcf) 88.9 88.4
Moisture (%) 30.0 31.4
Oven-Dried Moisture (%) 34.1 32.8
CBR In-Place (%) 5.9 6.3
Crushed Limestone Base Properties
Wet Density (pcf) 143.0 141.3
Dry Density (pcf) 138.1 136.3
Moisture (%) 3.6 3.7
Oven-Dried Moisture (%) 2.4 2.3
CBR In-Place (%) 95.3 100+
Thickness (in.) 1.7 6.2

The measured oven-dried moisture content for both items is consistent
with the historical values for 6 CBR Vicksburg Buckshot Clay. Figure 15
displays historical CBR vs. moisture content relationship for the Vicksburg
Buckshot Clay. Values from the field in-place CBR tests show subgrade
strengths ranging from 5.9 to 6.3%.
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5.2

5.3

Figure 15. Historical moisture content/strength relationship for Vicksburg Buckshot Clay.
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Dynamic cone penetrometer

A series of Dynamic Cone Penetrometer (DCP) tests were performed to
further characterize the strength of the unbound pavement layers. DCP
tests were performed after construction of the base and subgrade layers,
following the procedures described by ASTM D 6951-09. Measured values
of the DCP index (millimeters of penetration per hammer blow) were
converted to CBR strength using the relationship developed by Webster
etal. (1992, 1994). As-built DCP results are shown for Item 1 Station 37.5
in Figure 16 and Item 2 Station 25 in Figure 17. The DCP tests were
conducted immediately after the base course was placed and compacted,
not allowing time for the base course to “set-up” or harden to the full

100 CBR. The field CBR values were conducted several days later, which
allowed the base course time to harden and is reflected in the results
previously presented in Table 3.

Falling weight deflectometer

Falling Weight Deflectometer (FWD) tests were performed on the surface
of both test items after construction as shown in Figure 18. Results from
the FWD tests were evaluated in terms of the Impulse Stiffness Modulus
(ISM). The ISM is the ratio of the applied load to the measured plate
deflection. Higher ISM values represent a stiff pavement while low ISM



ERDC/GSL TR-14-28 19

values represent a weak pavement. As-built ISM values for Items 1 and 2
are presented in Figure 19. The average ISM values for Items 1 and 2 were
521 and 354 kips/in., respectively. The increased stiffness of Item 1 com-
pared to Item 2 is partially due to the extra 2 in. of base course and extra
1in. of HMA of Item 1.

Figure 16. As-built DCP results for Item 1 station 37.5.
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Figure 17. As-built DCP results for ltem 2 station 25.
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Figure 18. FWD testing inside HVS.

Figure 19. As-built ISM values for Items 1 and 2.
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6 Traffic Testing

Accelerated traffic testing of Items 1 and 2 was carried out using the ERDC
HVS. A dual-wheel tandem axle configuration was used to apply the traffic
to the test items. Figure 20 shows the wheel configuration used during
testing. The dual-wheel tandem axle was subjected to a nominal load of
20,000 Ib. Wheel loads were verified prior to testing by concurrently
weighing each axle with portable aircraft wheel scales. Tire pressures were
maintained at 120 psi throughout testing of both test items. The equivalent
axle load factor for this configuration is 2.08. Therefore, one pass of the
HVS is equal to 2.08 equivalent standard axle loads (ESALSs). To minimize
the effect of temperature on rutting results, testing on each item was
conducted at a constant pavement temperature of 77°F.

Figure 20. Verifying the applied load on the HVS dual-wheel tandem axle configuration.

Each test item was subjected to a uniformly distributed bi-directional traffic
pattern displayed in Figure 21. The lateral offset indices refer to 1-in. incre-
ments along which the wheel travels longitudinally. Thus, the extent of the
lateral wander associated of this traffic pattern is approximately 3 ft. A 3-ft-
wide wander pattern was utilized to mimic previous studies (Timm and
Priest, 2005) as well as duplicate what has been observed in other test
sections (Tingle and Jersey, 2007). Traffic loading was applied over the full
50-ft length of each test section. Periodic interruptions were made during
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trafficking to collect pavement performance data and instrumentation
response data. Data collection and instrumentation response recordings
were performed at predetermined stations located within the inner 40 ft of
the test section to avoid potential end effects created when the load changes
direction. The failure criterion for both items was defined as a 1-in. surface
rut, including any upheaval along the edges of the traffic lane.

Figure 21. Traffic pattern applied during trafficking,.
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Results

Failure of a flexible pavement test item is typically defined as 1 in. of
rutting for accelerated pavement testing. This failure definition is based
around the concept of pavement serviceability and the fact that pavement
serviceability begins to decrease exponentially in flexible pavement
systems after 1 in. of rutting.

Surface deformations

Surface deformation and rut depth measurements were recorded at
predetermined traffic intervals throughout the testing period. Surface
deformation measurements represent the change in the centerline profile of
the traffic lane. Surface deformation measurements were taken using a rod
and level. Rut depth measurements were taken by placing a metal straight
edge across the traffic lane at selected stations and measuring the maximum
rut depth. The maximum rut depth includes the permanent surface
deformation as well as any upheaval along the edge of the traffic pattern.
Figure 22 displays a schematic of the maximum rut measurement concept.

Figure 22. Measurement of rut depth.

The reported maximum rut depths presented in Figure 23 represent
maximum rut depth of 50% of the traffic lane. Maximum rut measurements
were taken at stations 12.5, 25, and 37.5 of the traffic lanes. The average of
the maximum rut depth measurements was reported. Surface deformation
measurements are presented in Figure 25. The reported surface deforma-
tion for each pass was calculated by averaging rod and level measurements
taken at 1-ft increments along the full length of the traffic lanes. Measure-
ments located at the ends were excluded due to exaggerated rutting caused
by the change of direction of the HVS carriage.
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Figure 23. Average maximum rut depth.
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Both lanes performed equally until approximately 13,000 ESALSs. It should
be noted that after the data collection point of 13,000 ESALSs on Item 2, the
HVS-A environmental control system malfunctioned. After the malfunction,
the top of the pavement temperature increased to above 100°F, the middle
of the pavement reached 91°F and the bottom of the pavement reached
86°F before the problem was discovered and trafficking was stopped. Figure
24 is a plot of the pavement temperature for Item 2 during the incident. The
environmental system was repaired and trafficking resumed. As seen in the
rut and deformation plots, Item 2 began to deteriorate after this data
collection point. While Item 2 was tested to 200,000 ESALs, the data
beyond 15,000 ESALSs should not be used for comparative purposes because
of the damage incurred during the elevated temperatures while Item 1 was
maintained at a constant temperature of 77°F during testing. Permanent
deformation measurements serve as a better performance measure in this
case because it eliminates the majority of the effect from the induced rutting
on Item 2 as a result of the elevated temperatures. Figure 25 displays how
the geogrid-stabilized Item 2 performed equally to the thicker unstabilized
item even after the environmental control malfunction occurred. A
summary of the comparable rut depth measurements is displayed in Table
4. Only values before the environment control system malfunctioned are
displayed in Table 4. Permanent deformations measurements are displayed
in Table 5 and are shown for all traffic levels to display the equal
performance of the two test items.
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Figure 24. Item 2 temperature change during HVS malfunction.
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Figure 25. Permanent surface deformation.
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Table 4. Maximum rut depth measurements.

Test Pavement ESALs

ltem | Structure 52 832 2600 5200 13,312 16,600
4-in. HMA 8-in.
Base

ltem 1 | Unstabilized 0.01 0.13 0.13 0.14 NA 0.14
3-in. HMA 6-in.
Base

ltem 2 | Stabilized 0.06 0.13 0.13 0.16 0.18 NA

Table 5. Permanent surface deformation measurements.

Test |Pavement ESALs

ltem | Structure 832 5200 | 52,000 | 104,000 | 200,000 | 500,000 | 800,000
4-in. HMA
8-in. Base

ltem 1 | Unstabilized 0.00 0.05 0.09 0.17 0.25 0.29 0.29
3-in. HMA
6-in. Base

Iltem 2 | Stabilized 0.00 0.00 0.13 0.21 0.28 NA NA

Falling weight deflectometer

FWD data were analyzed to characterize each test item in terms of
pavement structure stiffness. The ISM, which is a normalization of the
applied load divided by the resulting load plate deflection, was the basis
for comparison. FWD data were collected at seven separate stations along
each test item at certain traffic intervals. The data locations were kept
consistent throughout testing and were located at Stations 12.5, 17, 21, 25,
29, 33, and 37.5. Average ISM values for the as-built Item 1 and Item 2
were 521 and 354 kips/in., respectively. Changes in ISM values and the
effect of trafficking on each test item are summarized in Figure 26. After
the completion of testing, the ISM value for Item 1 was 497 kips/in.
representing a decrease of 24 kips/in. The final ISM value for Item 2 was
340 Kips/in. representing a decrease of 14 kips/in. Trend lines are
presented for visual purposes rather than for predictive purposes. As
shown, the beginning and ending ISM values for Item 2 had little change
indicting no damage to the base course over the testing duration, which
was verified with post-test forensics. These values further validate the
reasoning to not use rut depth as a performance measure for this
evaluation due to the temperature effects on the pavement causing
premature rutting in the surface course only.
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7.3

Figure 26. ISM changes during trafficking.
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Earth pressure cells

Earth pressure cells were installed in the subgrade and base course of both
test items. Table 6 summarizes the installation depths and locations of the
EPCs installed in Items 1 and 2. EPC1 and EPC2 were installed in the sub-
grade while EPC3 and EPC4 were installed in the base course. Installations
depths in Table 6 are from the surface of the HMA. Readings were taken at
specified traffic intervals and when there was a noticeable change in
rutting. Raw EPC data are located in Appendix A.

Table 6. Installation depths of installed EPCs.

ltem EPC Location Station Instrumentation Depth (in.)
1 EPC1 Subgrade 21 10.8
1 EPC2 Subgrade 335 10.8
1 EPC3 Base 16.5 5.0
1 EPC4 Base 29 4.3
2 EPC1 Subgrade 21 14.2
2 EPC2 Subgrade 335 14.2
2 EPC3 Base 16.5 6.1
2 EPC4 Base 29 5.9
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In order to average out the wander of the HVS and any misalignments due
to construction, pressure readings were recorded for approximately 10 min
of traffic after each designated data collection point. The peak values from
the 10 min of EPC readings were chosen to represent the maximum
pressure reading at that specific traffic interval. Taking the maximum value
from more than 10 min of trafficking helped ensure that the maximum
value was recorded when the HVS wheel load was directly over the installed
pressure cell. This helped to alleviate any impact on the recorded values that
might have resulted from installation and alignment differences in the
pressure cells between test items. Figure 27 is an example of the EPC
response during a 10-min traffic test. The peak values for each EPC during
the 10 min of trafficking are shown in the top right corner of the figure.

The peak EPC values from the 10-min tests were collected after each data
collection point for gauges installed in both the base course and the
subgrade. The changes in the EPC peak values for gauges installed in the
base course of both Item 1 and Item 2 during trafficking are shown in
Figure 28. Changes in the EPC peak values for gauges installed in the
subgrade of both Item 1 and Item 2 are shown in Figure 29.

For this study, predicted stresses within the pavement structure were
calculated using the Pavement Engineering Utility version 7 (PSEVEN).
PSEVEN is a software tool developed at the ERDC for the analysis, design
and evaluation of pavement structures. This tool implements pavement
criteria and procedures contained in Department of Defense Unified
Facilities Criteria (UFC) 3-260-02. PSEVEN can be used for the analysis of
flexible, rigid, unsurfaced, and mat-surfaced pavements. Required
pavement thicknesses, allowable loads and allowable passes are computed
for one or more ground vehicles and aircraft. PSEVEN is able to use
vehicle geometrical and load data from the standard database supplied
with the pavement engineering and design software package PCASE 2.09.
Custom vehicles can be created and managed to add vehicles not included
in the standard vehicles database. PSEVEN can also be used to design and
analyze pavements using the layered elastic theory. Other features of
PSEVEN include: frost calculations, minimum thickness of asphalt
surfaces, and Aircraft Classification Numbers.
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Figure 28. Change in EPC reading for base course during trafficking.
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7.4

Table 7 summarizes the data calculated using PSEVEN as well as the
measured responses from the EPCs installed in the test section. The values
used for the measured response were recorded at the beginning of the traffic
testing before any damage to the test section had occurred. As-built values
were used for the thickness of the base course at the location of the EPC
reading as well as the depth at which the EPC was installed in each item.

Single-depth deflectometers

Single-depth deflectometers were installed in each test item at approxi-
mately Station 25. The installed gauges have a measurement range of +2 in.
Gauges were installed at the top of the subgrade and recorded measure-
ments give an estimate of the deflections experienced by the subgrade. Raw

SDD data is located in Appendix B.
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Figure 29. Change in EPC readings for subgrade during trafficking.
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Table 7. Measured vs. predicted stresses.
As- built As- built
HMA Base Course | EPC Depth PSEVEN Measured
Thickness | Thickness from Surface | Predicted Measured | vs. PSEVEN
Location (in.) (in.) (in.) Stress (psi) | Stress (psi) | (psi)
ltem 1 | Station 21 Subgrade 4.2 7.7 10.8 14.2 9.6 -4.6
Iltem 1 | Station 33.5 | Subgrade 3.5 7.9 10.8 14.2 9.4 -4.8
ltem 1 | Station 16.5 | Base 3.9 7.8 5.0 45.1 28.9 -16.2
ltem 1 | Station 29 Base 4.0 7.7 4.3 53.6 29.5 -24.0
ltem 2 | Station 21 Subgrade 2.5 6.4 14.2 9.1 17.9 8.8
ltem 2 | Station 33.5 | Subgrade 2.5 5.9 14.2 9.1 11.6 2.5
Iltem 2 | Station 16.5 | Base 3.0 6.2 6.1 349 42.4 7.5
ltem 2 | Station 29 Base 2.4 6.2 5.8 37.4 48.5 11.1

As with the EPC measurements, the deflections reported are the peak val-
ues from the 10 min of data collected after a predetermined traffic level
was reached. Figure 30 is a representative plot of the 10-min SDD data
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that was collected and used to derive the peak value changes over time.
SDD peak value changes during trafficking are shown in Figure 31.
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Figure 31. SDD peak value changes during trafficking.
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Deflections for the geogrid-stabilized Item 2 were higher than the

deflections for the unstabilized Item 1. This response was anticipated

especially at the initial onset of trafficking due to the thickness of the HMA
and base-course layers on Item 2 being less than Item 1.

7.5

Geogrid strain gauges

Measurement of strain in the geogrid is an important parameter that can be
used to compare geogrids to one another as well as help develop predictive
numerical models of pavements stabilized using geogrids. More importantly
strain gauges on the geogrids show the mobilization of the tensile strength
of the geogrid under loading. For this testing, geogrid strain gauges were
installed in several locations on the geogrid, as previously shown in Figure
12. The base course creates a harsh, unfavorable environment for the
installation of strain gauges; therefore, the survival rate of the geogrid strain

gauges is low. After installation, only one of the three gauges was func-

tioning correctly. The surviving gauge was labeled as S1 in Figure 12 and
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was perpendicular to the direction of traffic. Raw geogrid strain gauge data
is located in Appendix C.

At the onset of testing, instrumentation response was recorded after
predetermined traffic intervals. As testing progressed, response was also
recorded after any significant change in pavement rutting in addition to
the recording at specified traffic intervals. Also, as with the previously
discussed instrumentation, instrumentation response was recorded for
10-min intervals after each data collection point. Figure 32 displays a
typical plot of the geogrid strain gauge response for the 10-min collection
period. Positive strain readings are indicative of tension and negative
readings indicate compression. Figure 33 displays the peak values of each
gauge and how these values changed during trafficking.

Asphalt strain gauges

Asphalt strain gauges (ASGs) were installed at Stations 12.5 and 37.5 for this
study. Two strain gauges were placed at each station with one measuring
the transverse direction and the other measuring the longitudinal direction.
As with the previous trafficking data, at the onset of testing, instrumenta-
tion response was recorded after predetermined traffic intervals. As testing
progressed, response was also recorded after any significant change in
pavement rutting in addition to the recording at specified traffic intervals.
Instrumentation response was recorded for 10-min intervals after each data
collection point. Raw ASG data are located in Appendix D.

After installation and construction were complete, it was determined that all
the ASGs for the unstabilized Item 1 were functioning properly and only the
ASGs at Station 37.5 for the stabilized Item 2 were functioning properly.
Figure 34 displays a typical plot of the ASG response for the 10-min
collection period. Peak tensile strain values were selected from the 10-min
test data. Figure 35 displays the peak tensile strain values for each location
and how these values changed during trafficking.

As displayed in Figure 35, the strain at the bottom of the asphalt layer
increased immediately after the environmental chamber malfunction. The
peak strain readings for Item 2 increased 12% from 614 microstrain before
the event to 686 microstrain after the event. For comparative purposes,
the change in max tensile strain for Item 1 for the same traffic interval was
essentially zero with an actual -1.8% decrease. These readings further rein-
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force the conclusion that the rutting in Item 2 was due to the elevated
temperatures experienced during the equipment malfunction.
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Figure 33. Geogrid strain gauge peak changes during trafficking,.
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Figure 35. ASG peak tensile strain value changes during trafficking.
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Post-test Forensics

Upon conclusion of traffic testing, each lane was trenched in two locations
to further investigate the method of pavement failure. Trench locations
were based on location of maximum and minimum rutting in each lane.
Each trench was approximately 3 ft in width and started with excavation of
the HMA surface. Measurements of layer thickness were recorded at each
location. Additionally, in-field CBR tests, nuclear density measurements,
and moisture contents were conducted on each layer within the wheel path
and outside the wheel path. Results from the tests are displayed in Table 8.
The post-test densities for the CH subgrade material show minor changes
of -0.3 and 0.8 pcf for Items 1 and 2, respectively.

Table 8. Post-test test-section properties.

ltem 1 ltem 2

4-in. Nominal AC 3-in. Nominal AC
Test Unstabilized Base Stabilized Base

CH Subgrade Properties

Wet Density (pcf) 113.9 115.8
Dry Density (pcf) 88.6 89.2
Moisture (%) 28.1 30.2
Oven-Dried Moisture (%) 30.1 29.6
CBR In-Place (%) 11.0 9.5

Due to the disturbance of the base course when removing the HMA layer,
CBR tests were not conducted on the top layer of the base course. The
granular material was loose from the excavation, and results from any
attempted CBR tests would have been unreliable. Care was taken when
excavating the base course to avoid damage to the geogrid before
inspection. Inspection of the trenches in Items 1 and 2 confirmed there was
no failure in the subgrade for either Item. Figures 36 and 39 show the
excavated trenches of both test items at the completion of post-traffic
testing. Figures 37 and 40 are graphical depictions of the individual layer
thicknesses post excavation. From Figures 36 and 39 it can be seen there
was no damage to the subgrade layer in Item 1 and Item 2. Visual
observation indicates failure occurred mostly in the HMA of Item 2. The
damage in the base-course layer of Item 2 is more than likely a result of the
reduced thickness in the HMA layer caused by shear flow of the asphalt
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during the temperature spike from the environmental chamber failure.
Figure 38 shows the geogrid upon excavation of the overlying base-course
material in Item 2. From Figure 38, the indentions in the subgrade are
indicative of good aggregate strike-through and therefore good aggregate
interlock with the geogrid.

Figure 36. Item 1 excavated trench.

Figure 37. Item 1 post-traffic layer thicknesses.
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Figure 38. Excavated geogrid in ltem 2.

Figure 39. Item 2 excavated trench.
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Figure 40. Item 2 post-traffic layer thicknesses.
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9 Conclusions and Recommendations

In this study, a full-scale test section was constructed and trafficked to
evaluate the performance of geogrid-stabilized roads. Several conclusions
and recommendations were generated after analysis of the construction
and traffic data. The following conclusions are a result of the study:

1. The pavement test items were constructed in a uniform manner with
minor variability between test items. The uniformity of construction allows
meaningful comparisons between test items.

2. The geogrid-stabilized pavement section performed equally as well as the
thicker unstabilized pavement section up until the point the environmental
chamber of the HVS malfunctioned causing a significant temperature
spike during trafficking of the geogrid-stabilized Item 2. Rutting data after
this event should not be used as a performance measurement to compare
the geogrid-stabilized section vs. the unstabilized section. Rutting of Item
2 after this event can be attributed to plastic flow of the HMA layer and
this is confirmed by the lack of rutting in the base course and subgrade
layers of Item 2 during post-test excavation.

3. Measured deflections were higher for the geogrid-stabilized Item 2 but this
did not appear to influence the shearing of the subgrade in Item 2.

4. The measured deflections in both items increased initially at approxi-
mately the same rate. During later stages of trafficking, measured
deflections for both the geogrid-stabilized and the unstabilized items
leveled off and showed little to no increase with subsequent passes.

5. Post-test forensics showed no evidence of shearing in the base course of
Item 1 and very little in the base course of Item 2. Shearing and therefore
rutting in the base course of Item 2 can be attributed to the temperature
spike causing a reduced thickness in the HMA layer.

6. Post-test forensics showed no evidence of shearing in the subgrade of
either Item 1 or Item 2.

7. Post-test forensics showed a slight change in the test-section subgrade
over time. The subgrade strength of the unstabilized Item 1 increased to a
CBR of 11, whereas Item 2 had less of an increase with a post-test CBR of
9.5. The additional strength gain of Item 1 provided an additional benefit
to the unstabilized item when compared to the geogrid-stabilized item.
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8. Further investigation into the geogrid strain responses is needed. Tensile
strain responses increased during the temperature spike and decreased
immediately afterwards only to increase again as trafficking progressed.
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Appendix A: Earth Pressure Cell Responses
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Appendix B: Single-Depth Deflectometer
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Appendix C: Geogrid Strain Response
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Appendix D: Asphalt Strain Response
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