Tensar The company You can build on The company

TensarSoil[®] program for design of reinforced soil structures - 2-part wedge slope example

TTV_103 training video - example for 2-part wedge slope design method (this is based on the withdrawn HA68/94 method, but adjusted to use partial material factors, as well as seismic loading)

STEP	ACTION	COMMENTS		
Start	Start TensarSoil program and input initial design parameters			
1	Start TensarSoil √ Seismic loading, then Make a new file			
	Make a new file			
	OK to conditions of use This opens the "Facing system and design method" window, which gives access to design method and facing system			
2	Select Tensar 2-Part Wedge Slope Design from drop-down list	Seismic loading is already selected Note: the only facings remaining available are those suitable for slope design, ie with a facing angle less than 70°		
3	Tensar Standard Facings are available by default. In the central panel click on Wraparound , select Bagwork using the radio button and then on the right: Change Face angle to 65° Change Total face height to 12m Change Spacings to be multiple of to 0.25m Change Minimum to ×2	May need re-sizing to see options fully Values which are fixed are "greyed" and cannot be changed. For values which can be changed, hint gives range as cursor is passed over the value: Hint: 1-3		
	All other parameters default Then $\sqrt{\text{SET}}$ and $\sqrt{\text{OK}}$	You may be asked "Do you want to set all grid coverage to the default for this facing", click Yes		
4	The Fill and foundation properties form opens Peak parameters are used by default: $c' = 2 \text{ kPa}, \phi' = 30^{\circ}, \gamma = 19 \text{ kN/m}^3$, Maximum particle size = 2mm $\sqrt{\text{SET}}$ and OK to the message re the use of c'	Fixed as drained for fill, so greyed. Note: (1) Warning is given concerning the use of c' which has been defined in this case. (2) The Tensar 2-part wedge slope design method only checks the stability of the reinforced soil slope, and does not include a foundation check, which should be done separately.		
5	The Secondary Grids form opens √ SET default arrangement using TX150	Secondary geogrids help to prevent local instability at the facing, grade and spacing may be adjusted		
6	The Earthquake Accelerations input form opens, so check: Apply earthquake accelerations $$ Set Horizontal = 0.2g Set Vertical = 0.1g \sqrt{OK}	 Calculate opens and gives access to the full input. √ OK makes changes and closes the form. Change to user defined seismic design parameters permits change of all "greyed values". Warnings are given if outside normal limits. 		
7	Now ready to finalise program input and carry out the design	There may be a warning: "Reinforcement costs have not been entered – please click on cost button to enter prices", also a warning about the limitations of the 2-part wedge slope design method. Press OK both times, the program will then open showing the basic operating desktop.		
8	$\overset{?=}{\overset{=}{\overset{=}{\overset{=}{}{}}}}$: Check interaction factors, then $\sqrt{\mathbf{OK}}$	Use default values.		

9	Top slope: Complete the geometry by adding top slope, 2m high at 23° and 1m berm, then \sqrt{SET}	Each time a dimension is adjusted, it must be SET for the change to take place. Warnings are given re: maximum top slope angle.
10	: Set surcharge (x from crest of top slope) Load 1: Left end = $0m$, Right end = $100m$, Load = 12 kPa, TEMP and then \sqrt{SET}	Note: (1) methods of measuring "x" values. (2) importance of temporary (live load) or permanent (dead load).
11	: Check reinforcement properties Use defaults: 60 years design life, 20°C soil temp Set 2mm Maximum particle size Review design parameters: shows all factors √ OK	Factors are safety factors, so values are ≥ 1.00 Following current nomenclature, f_s takes account of extrapolation of data, $RF_{\rm ID}$ is the installation damage factor, RF_W is for weathering and RF_{CH} for chemical end environmental effects.
12	Partial factors Review values Click Default values	Default values are material partial factors on soil strength and geogrid strength of 1.3 for static and 1.1 for seismic. These values are user adjustable.

STEP	ACTION	COMMENTS	
Run the design procedure			
All input is complete, so now ready to start the design procedure in the HA68/94 Design form			
13	In the Tensar 2-Part Wedge Slope Design form $\sqrt{\text{Keep grid lengths equal}}$	This keeps the back and front of the reinforced soil block at the same angle	
14	Proceed 1 st click	Text tells the user what stage the calculation has reached, preparing for the $T_{\mbox{\scriptsize ob}}$ check	
15	2nd click	T_{ob} = 9.5m for static, 8.5m for seismic down and 8.5m for seismic up, preparing for T_{max} check	
16	Proceed 3rd click	Provides results and dimensions from T_{max} check for both static and seismic cases	
17	4 th click	Provides default dimensions of the reinforced soil block, giving $L_B = 10.5m$ with back of reinforced soil block angle = 65° . Alternative customised dimensions may be set, but they must stay within the requirements determined from the T_{ob} and T_{max} mechanisms.	
18	CO Proceed 5th click	The Tensar 2-Part Wedge Slope Design form now changes to a spacing curve, and the Modify Grid Layout form opens. GO Proceed has become greyed and will only become active again once an adequate grid layout has been arranged.	
19	Using the Modify Grid Layout controls , adjust the geogrid grades and spacing until all plotted points fall on the left-hand side of the spacing curve for the grade being used. Use option to add RE540 at the top of the slope	Layout resulting is: RE570 at base, then 4 RE570 @ 0.5m spacing: 4 RE570 @ 0.75m spacing 3 RE570 @ 1.0m spacing 3 RE540 @ 1.0m spacing with extra at top	
20	Proceed 6 th click	Warning that a full wedge check will be carried out	
21	Proceed 7 th click	Wedges flash on the section showing where checks are being carried out.	
22	On completion, the Tensar 2-Part Wedge Slope Design form gives results for wedges starting at different levels in terms of the "Highest proportion of reinforcement strength used", plus the T_{max} mechanism The form indicates Design is satisfactory if all results are < 1.00	Cost index = 129.7 units	
23	Save file as 2PWslope Example 65.WAL	Save to preferred location	

 65° slope section showing critical wedges (Step 22)

STEP	ACTION	COMMENTS	
Inves	tigate higher accelerations		
24	Press Start again to activate input	Input is not active during the design process.	
25	Investigate the effect of higher ground accelerations on the design : Earthquake accelerations Use horizontal = 0.3g and vertical = 0.3g	The upper limits currently permitted are 0.5g	
26	Proceed 1 st click	Preparing for the T_{ob} check	
27	Proceed 2 nd click	T_{ob} = 9.5m for static, 9.0m for seismic down and 10.0m for seismic up, preparing for T_{max} check	
28	Proceed 3rd click	Provides results and dimensions from T_{max} check for both static and seismic cases	
29	Proceed 4 th click	Provides default dimensions of the reinforced soil block, now giving $L_B = 13.0m$.	
30	9 Proceed 5 th click	The Tensar 2-Part Wedge Slope Design form now changes to a spacing curve, and the Modify Grid Layout form opens.	
31	Using the same geogrid layout as before, which was determined by the static case, so remains the most efficient	Layout resulting is: RE570 at base, then 4 RE570 @ 0.5m spacing: 4 RE570 @ 0.75m spacing 3 RE570 @ 1.0m spacing 3 RE540 @ 1.0m spacing with extra at top	
32	Proceed 6 th click	Warning that a full wedge check will be carried out	
33	Proceed 7 th click	Wedges flash on the section showing where checks are being carried out.	
34	On completion, the Tensar 2-Part Wedge Slope Design form gives results for wedges starting at different levels in terms of the "Highest proportion of reinforcement strength used", plus the T_{max} mechanism The form indicates Design is satisfactory if all results are < 1.00	Cost index = 156.3 units NOTE : the result of higher acceleration is an increase in geogrid length, but the layout remains the same as the previous case	

35 In this case the design is satisfactory, however in different situations it is possible that the result of the final 2-part wedge check is a message that: **Design is NOT satisfactory**. This can generally be improved by increasing the geogrid length, see Step 29.

Solving **Design is NOT satisfactory** cases may be assisted by examining the locations of red wedges in the slope cross section following completion of the final 2-part wedge search. This issue may be seen by using $A_h = 0.5g$ and $A_v = 0$.

Tensar 2-Part Wedge Slope Design

Tensar 2 Fait Wedge Slope Design	
meoretical depth of top layer is 1.177 m	^
Tmax requires anchorage length of theoretical top layer of reinforcement to be 0.428 m	
Base grid length needed for Tmax is (seismic down 10.000 m	
Highest proportion of reinforcement strength used by mechanism at 0.000 m (seismic down) = 0.591	
Highest proportion of reinforcement strength used by mechanism at 3.000 m (seismic down) = 0.623	
Highest proportion of reinforcement strength used by mechanism at 5.000 m (seismic down) = 0.539	
Highest proportion of reinforcement strength used by mechanism at 8.000 m (seismic down) = 0.388	
Proportion of reinforcement strength used for Tmax mechanism (seismic down) = 0.630	
Maximum proportion of grid strength needed for equilibrium is (seismic down) 0.630	
Base width needed for Tob is (seismic up) 10.000 m	
Tmax mechanism requires number of layers of the weakest grid to be 23 (seismic up)	
Theoretical depth of top layer is 1.251 m	
Tmax requires anchorage length of theoretical top layer of reinforcement to be 0.859 m	
Base grid length needed for Tmax is (seismic up) 13.000 m	
Highest proportion of reinforcement strength used by mechanism at 0.000 m (seismic up) = 0.760	
Highest proportion of reinforcement strength used by mechanism at 3,000 m (seismic up) = 0.723	
Highest proportion of reinforcement strength used by mechanism at 5,000 m (seismic up) = 0.542	
Highest proportion of reinforcement strength used by mechanism at 8,000 m (seismic up) = 0.445	
Proportion of reinforcement strength used for Tmax mechanism (seismic up) = 0.584	
Maximum proportion of grid strength needed for equilibrium is (seismic up) 0.760	
Design is satisfactory	
Data may be changed, then press 'Start again' to redesign if required	
Data may be changed, then press otait again to redesign in required	×
ywy Start again	

65° slope section showing critical wedges (Step 34) with information provided in the **Tensar 2-Part Wedge Slope Design** form

STEP	ACTION	COMMENTS
Adjus	st to lower angle slope with variable geogrid ler	ngth and without earthquake loading
36	Press Start again to activate input	Input is not active during the design process.
37	Click	Low angle facing does not use facing units.
	Wraparound (bagwork) 65°	
	to open the Facing system and design method form and select Standard Facings from drop- down list top left: Select Low angle slope Keep Face angle as 40° Keep Total face height as 12m Keep Maximum spacing set to 1.0m All other parameters as default, √ SET and √ OK	You are asked "Do you want to set all grid coverage to the default for this facing", click Yes
38	By default the Secondary grids form opens Use default TX150 at 0.5m spacing, √ SET	Also set Maximum spacing without a secondary grid to 0.5m
39	. Grid lengths Step grid lengths √ Set Length 2m, √ OK	This will result in the geogrids being in groups of differing length
40	Earthquake accelerations	Removes earthquake design case
	Apply earthquake accelerations	
	which sets horizontal and vertical acceleration to 0	
41	In the Tensar 2-Part Wedge Slope Design form	This permits face and back angle to be different.
42	Proceed 5 times accept all defaults	
43	Using the Modify Grid Layout controls , adjust the geogrid grades and spacing until all plotted points fall on the left-hand side of the spacing curve for the grade being used.	Layout resulting is: RE570 at base 2 RE570 @ 0.75m spacing 5 RE570 @ 1.0m spacing 5 RE540 @ 1.0m spacing
44	Proceed 2 times	Carries out wedge check Design is satisfactory Cost index is 93.5 units
45	Final section has stepped lengths	When designing low angle slopes, it is often more cost effective to reduce geogrid length towards the top of the structure
46	Save file as 2PWslope Example 40.WAL	Save to preferred location

C:\Users\MDobie\Desktop\2P 🗖 🔳 💌
20.013- 21.083-
14.301
0

Tensar 2-Part Wedge Slope Design Now check Tmax and do thorough wedge check Base width needed for Tob is 13,000 m Tmax mechanism requires number of layers of the weakest grid to be 21 Theoretical depth of top layer is 1.309 m Tmax requires anchorage length of theoretical top layer of reinforcement to be 0.800 m Base grid length needed for Tmax is 13.000 m Highest proportion of reinforcement strength used by mechanism at 0.000 m = 0.489 Highest proportion of reinforcement strength used by mechanism at 1.500 m = 0.456 Highest proportion of reinforcement strength used by mechanism at 6.500 m = 0.345 Highest proportion of reinforcement strength used by mechanism at 9.000 m = 0.261 Proportion of reinforcement strength used for Tmax mechanism = 0.453 Maximum proportion of grid strength needed for equilibrium is 0.489 Design is satisfactory Data may be changed, then press 'Start again' to redesign if required CO Start again

40° slope section showing critical wedges and four geogrid lengths (end of Step 45) with information provided in the Tensar 2-Part Wedge Slope Design form

The information in this document supersedes any previous bulletins in relation to this subject matter and is supplied by Tensar International Limited free of charge for general information purposes only. This document does not form part of any contract or intended contract. Tensar International Limited excludes to the fullest extent lawfully permitted any and all liability whatsoever for any loss or damage howsoever arising out of the use of and reliance upon this information. It is your sole responsibility and you must assume all risk and liability for the final determination as to the suitability of any Tensar International Limited product and/or design for the use and in the manner contemplated by you in connection with a particular project

	Copyright © Tensar International Limited 2019
UK Head Office Units 2 - 4 Cunningham Court Shadsworth Business Park Blackburn BB1 2QX United Kingdom	bsi. ISO 9001:2015 Duality Management Applicable to Trensr International and Tensar Manufacturing Ltd
6/6	IB/TsoilExample_2PWslope
	UK Head Office Units 2 - 4 Cunningham Court Shadsworth Business Park Blackburn BB1 2QX United Kingdom 6/6